Structural foundation of lipid switch by a bridge-like lipid-transfer protein


  • Neuman, S. D., Levine, T. P. & Bashirullah, A. A novel superfamily of bridge-like lipid switch proteins. Tendencies Cell Biol. 32, 962–974 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casares, D., Escriba, P. V. & Rossello, C. A. Membrane lipid composition: impact on membrane and organelle construction, operate and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blom, T., Somerharju, P. & Ikonen, E. Synthesis and biosynthetic trafficking of membrane lipids. Chilly Spring Harb. Perspect. Biol. 3, a004713 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, C. L., Walch, L. & Verbavatz, J. M. Lipids and their trafficking: an integral a part of mobile group. Dev. Cell 39, 139–153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid switch proteins: the lipid commute through shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schauder, C. M. et al. Construction of a lipid-bound prolonged synaptotagmin signifies a job in lipid switch. Nature 510, 552–555 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, M., Guillen-Samander, A. & De Camilli, P. RBG motif bridge-like lipid transport proteins: construction, capabilities, and open questions. Annu. Rev. Cell Dev. Biol. 39, 409–434 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P., Lees, J. A., Lusk, C. P. & Reinisch, Ok. M. Cryo-EM reconstruction of a VPS13 fragment reveals a protracted groove to channel lipids between membranes. J. Cell Biol. 219, e202001161 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, M. G., Suen, P. H., Wu, Y., Reinisch, Ok. M. & De Camilli, P. SHIP164 is a chorein motif lipid switch protein that controls endosome–Golgi membrane visitors. J. Cell Biol. 221, e202111018 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osawa, T. et al. Atg2 mediates direct lipid switch between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, Ok., Bellad, A., Prasad, P., Girimaji, S. C. & Muthusamy, B. KIAA1109 gene mutation in surviving sufferers with Alkuraya-Kučinskas syndrome: a assessment of literature. BMC Med. Genet. 21, 136 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toulmay, A. et al. Vps13-like proteins present phosphatidylethanolamine for GPI anchor synthesis within the ER. J. Cell Biol. 221, e202111095 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. A conserved megaprotein-based molecular bridge crucial for lipid trafficking and chilly resilience. Nat. Commun. 13, 6805 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John Peter, A. T., Cheung, N. J. & Kornmann, B. Csf1: a putative lipid transport protein required for homeoviscous adaptation of the lipidome. Contact 5, 25152564221101974 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokai, M., Kawasaki, H., Kikuchi, Y. & Ouchi, Ok. Cloning and characterization of the CSF1 gene of Saccharomyces cerevisiae, which is required for nutrient uptake at low temperature. J. Bacteriol. 182, 2865–2868 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verstreken, P. et al. Tweek, an evolutionarily conserved protein, is required for synaptic vesicle recycling. Neuron 63, 203–215 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, Y. J. et al. Tweek-dependent formation of ER-PM contact websites allows astrocyte phagocytic operate and transforming of neurons. Preprint at bioRxiv https://doi.org/10.1101/2023.11.06.565932 (2023).

  • Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact websites. J. Cell Biol. 217, 3625–3639 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, S., Jeong, H., Goehring, A., Kang, Y. & Gouaux, E. Massive-scale progress of C. elegans and isolation of membrane protein complexes. Nat. Protoc. 18, 2699–2716 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeng, E. E. et al. Systematic identification of host cell regulators of Legionella pneumophila pathogenesis utilizing a genome-wide CRISPR display. Cell Host Microbe 26, 551–563 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R., Kumari, B. & Kumar, M. Prediction of endoplasmic reticulum resident proteins utilizing fragmented amino acid composition and help vector machine. PeerJ 5, e3561 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valverde, D. P. et al. ATG2 transports lipids to advertise autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adlakha, J., Hong, Z., Li, P. & Reinisch, Ok. M. Structural and biochemical insights into lipid transport by VPS13 proteins. J. Cell Biol. 221, e202202030 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Structural foundation for lipid switch by the ATG2A–ATG9A advanced. Nat. Struct. Mol. Biol. 32, 35–47 (2025).

  • Braschi, B., Bruford, E. A., Cavanagh, A. T., Neuman, S. D. & Bashirullah, A. The bridge-like lipid switch protein (BLTP) gene group: introducing new nomenclature based mostly on structural homology indicating shared operate. Hum. Genom. 16, 66 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, S., Alvarez, D., John Peter, A. T. & Vanni, S. Unbiased MD simulations establish lipid binding websites in lipid switch proteins. J. Cell Biol. 223, e202312055 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tristram-Nagle, S., Petrache, H. I. & Nagle, J. F. Construction and interactions of absolutely hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917–925 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallgren, J. T. et al. DeepTMHMM predicts alpha and beta transmembrane proteins utilizing deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2022.04.08.487609 (2022).

  • Szumowski, S. C. et al. Small GTPases promote actin coat formation on microsporidian pathogens traversing the apical membrane of Caenorhabditis elegans intestinal cells. Cell Microbiol. 18, 30–45 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C. L. et al. Suggestions regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813–825 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bean, B. D. M. et al. Aggressive organelle-specific adaptors recruit Vps13 to membrane contact websites. J. Cell Biol. 217, 3593–3607 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez-Sanchez, R. et al. Atg9 establishes Atg2-dependent contact websites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217, 2743–2763 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gueneau, L. et al. KIAA1109 variants are related to a extreme dysfunction of mind improvement and arthrogryposis. Am. J. Hum. Genet. 102, 116–132 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei, J., Tang, M. & Grishin, N. V. PROMALS3D internet server for correct a number of protein sequence and construction alignments. Nucleic Acids Res. 36, W30–W34 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eng, J. Ok., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search software. Proteomics 13, 22–24 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilmarth, P. A., Riviere, M. A. & David, L. L. Methods for correct protein identification in shotgun proteomic research of human, mouse, bovine, and rooster lenses. J. Ocul. Biol. Dis. Inform. 2, 223–234 (2009).

    Article 

    Google Scholar
     

  • Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical mannequin to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: constructing new software program for automated crystallographic construction willpower. Acta Crystallogr. D 58, 1948–1954 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *