Neuman, S. D., Levine, T. P. & Bashirullah, A. A novel superfamily of bridge-like lipid switch proteins. Tendencies Cell Biol. 32, 962–974 (2022).
Casares, D., Escriba, P. V. & Rossello, C. A. Membrane lipid composition: impact on membrane and organelle construction, operate and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167 (2019).
Blom, T., Somerharju, P. & Ikonen, E. Synthesis and biosynthetic trafficking of membrane lipids. Chilly Spring Harb. Perspect. Biol. 3, a004713 (2011).
Jackson, C. L., Walch, L. & Verbavatz, J. M. Lipids and their trafficking: an integral a part of mobile group. Dev. Cell 39, 139–153 (2016).
Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid switch proteins: the lipid commute through shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).
Schauder, C. M. et al. Construction of a lipid-bound prolonged synaptotagmin signifies a job in lipid switch. Nature 510, 552–555 (2014).
Hanna, M., Guillen-Samander, A. & De Camilli, P. RBG motif bridge-like lipid transport proteins: construction, capabilities, and open questions. Annu. Rev. Cell Dev. Biol. 39, 409–434 (2023).
Li, P., Lees, J. A., Lusk, C. P. & Reinisch, Ok. M. Cryo-EM reconstruction of a VPS13 fragment reveals a protracted groove to channel lipids between membranes. J. Cell Biol. 219, e202001161 (2020).
Hanna, M. G., Suen, P. H., Wu, Y., Reinisch, Ok. M. & De Camilli, P. SHIP164 is a chorein motif lipid switch protein that controls endosome–Golgi membrane visitors. J. Cell Biol. 221, e202111018 (2022).
Osawa, T. et al. Atg2 mediates direct lipid switch between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288 (2019).
Kumar, Ok., Bellad, A., Prasad, P., Girimaji, S. C. & Muthusamy, B. KIAA1109 gene mutation in surviving sufferers with Alkuraya-Kučinskas syndrome: a assessment of literature. BMC Med. Genet. 21, 136 (2020).
Toulmay, A. et al. Vps13-like proteins present phosphatidylethanolamine for GPI anchor synthesis within the ER. J. Cell Biol. 221, e202111095 (2022).
Wang, C. et al. A conserved megaprotein-based molecular bridge crucial for lipid trafficking and chilly resilience. Nat. Commun. 13, 6805 (2022).
John Peter, A. T., Cheung, N. J. & Kornmann, B. Csf1: a putative lipid transport protein required for homeoviscous adaptation of the lipidome. Contact 5, 25152564221101974 (2022).
Tokai, M., Kawasaki, H., Kikuchi, Y. & Ouchi, Ok. Cloning and characterization of the CSF1 gene of Saccharomyces cerevisiae, which is required for nutrient uptake at low temperature. J. Bacteriol. 182, 2865–2868 (2000).
Verstreken, P. et al. Tweek, an evolutionarily conserved protein, is required for synaptic vesicle recycling. Neuron 63, 203–215 (2009).
Kang, Y. J. et al. Tweek-dependent formation of ER-PM contact websites allows astrocyte phagocytic operate and transforming of neurons. Preprint at bioRxiv https://doi.org/10.1101/2023.11.06.565932 (2023).
Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact websites. J. Cell Biol. 217, 3625–3639 (2018).
Clark, S., Jeong, H., Goehring, A., Kang, Y. & Gouaux, E. Massive-scale progress of C. elegans and isolation of membrane protein complexes. Nat. Protoc. 18, 2699–2716 (2023).
Jeng, E. E. et al. Systematic identification of host cell regulators of Legionella pneumophila pathogenesis utilizing a genome-wide CRISPR display. Cell Host Microbe 26, 551–563 (2019).
Kumar, R., Kumari, B. & Kumar, M. Prediction of endoplasmic reticulum resident proteins utilizing fragmented amino acid composition and help vector machine. PeerJ 5, e3561 (2017).
Valverde, D. P. et al. ATG2 transports lipids to advertise autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).
Adlakha, J., Hong, Z., Li, P. & Reinisch, Ok. M. Structural and biochemical insights into lipid transport by VPS13 proteins. J. Cell Biol. 221, e202202030 (2022).
Wang, Y. et al. Structural foundation for lipid switch by the ATG2A–ATG9A advanced. Nat. Struct. Mol. Biol. 32, 35–47 (2025).
Braschi, B., Bruford, E. A., Cavanagh, A. T., Neuman, S. D. & Bashirullah, A. The bridge-like lipid switch protein (BLTP) gene group: introducing new nomenclature based mostly on structural homology indicating shared operate. Hum. Genom. 16, 66 (2022).
Srinivasan, S., Alvarez, D., John Peter, A. T. & Vanni, S. Unbiased MD simulations establish lipid binding websites in lipid switch proteins. J. Cell Biol. 223, e202312055 (2024).
Tristram-Nagle, S., Petrache, H. I. & Nagle, J. F. Construction and interactions of absolutely hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917–925 (1998).
Hallgren, J. T. et al. DeepTMHMM predicts alpha and beta transmembrane proteins utilizing deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2022.04.08.487609 (2022).
Szumowski, S. C. et al. Small GTPases promote actin coat formation on microsporidian pathogens traversing the apical membrane of Caenorhabditis elegans intestinal cells. Cell Microbiol. 18, 30–45 (2016).
Chang, C. L. et al. Suggestions regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813–825 (2013).
Bean, B. D. M. et al. Aggressive organelle-specific adaptors recruit Vps13 to membrane contact websites. J. Cell Biol. 217, 3593–3607 (2018).
Gomez-Sanchez, R. et al. Atg9 establishes Atg2-dependent contact websites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217, 2743–2763 (2018).
Gueneau, L. et al. KIAA1109 variants are related to a extreme dysfunction of mind improvement and arthrogryposis. Am. J. Hum. Genet. 102, 116–132 (2018).
Pei, J., Tang, M. & Grishin, N. V. PROMALS3D internet server for correct a number of protein sequence and construction alignments. Nucleic Acids Res. 36, W30–W34 (2008).
Eng, J. Ok., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search software. Proteomics 13, 22–24 (2013).
Wilmarth, P. A., Riviere, M. A. & David, L. L. Methods for correct protein identification in shotgun proteomic research of human, mouse, bovine, and rooster lenses. J. Ocul. Biol. Dis. Inform. 2, 223–234 (2009).
Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical mannequin to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).
Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory analysis and evaluation. J. Comput. Chem. 25, 1605–1612 (2004).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Adams, P. D. et al. PHENIX: constructing new software program for automated crystallographic construction willpower. Acta Crystallogr. D 58, 1948–1954 (2002).