Cashman, Okay. V., Sparks, R. S. J. & Blundy, J. D. Vertically intensive and unstable magmatic programs: a unified view of igneous processes. Science 355, eaag3055 (2017).
Bachmann, O. & Bergantz, G. W. Deciphering magma chamber dynamics from kinds of compositional zoning in massive silicic ash circulation sheets. Rev. Mineral. Geochem. 69, 651–674 (2008).
Cooper, Okay. M. & Kent, A. J. Fast remobilization of magmatic crystals saved in chilly storage. Nature 506, 480–483 (2014).
Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Big magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the expansion of the continental crust. Earth Planet. Sci. Lett. 457, 173–180 (2017).
Holness, M. B., Inventory, M. J. & Geist, D. Magma chambers versus mush zones: constraining the structure of sub-volcanic plumbing programs from microstructural evaluation of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).
Weber, G., Caricchi, L., Arce, J. L. & Schmitt, A. Okay. Figuring out the present dimension and state of subvolcanic magma reservoirs. Nat. Commun. 11, 5477 (2020).
Andújar, J. et al. Experimental proof for the shallow manufacturing of phonolitic magmas at Mayotte. C. R. Geosci. 354, 225–256 (2023).
Berthod, C. et al. The 2018-ongoing Mayotte submarine eruption: magma migration imaged by petrological monitoring. Earth Planet. Sci. Lett. 571, 117085 (2021).
Berthod, C. et al. Mantle xenolith-bearing phonolites and basanites feed the energetic volcanic ridge of Mayotte (Comoros archipelago, SW Indian Ocean). Contrib. Mineral. Petrol. 176, 75 (2021).
Feuillet, N. et al. Beginning of a big volcanic edifice offshore Mayotte through lithosphere-scale dyke intrusion. Nat. Geosci. 14, 787–795 (2021).
White, S. M., Crisp, J. A. & Spera, F. J. Lengthy‐time period volumetric eruption charges and magma budgets. Geochem. Geophys. Geosystems 7, 2005GC001002 (2006).
Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Entrance. Earth Sci. 10, 970131 (2022).
Chave, A. D. & Jones, A. G. The Magnetotelluric Technique: Idea and Apply (Cambridge Univ. Press, 2012).
Yoshino, T. in Magmas Underneath Stress (eds Kono, Y. & Sanloup, C.) 281–319 (Elsevier, 2018).
Johnson, N. E. et al. Magma imaged magnetotellurically beneath an energetic and an inactive magmatic phase in Afar, Ethiopia. Geol. Soc. Lond. Spec. Publ. 420, 105–125 (2016).
Hill, G. J. et al. Trans-crustal structural management of CO2-rich extensional magmatic programs revealed at Mount Erebus Antarctica. Nat. Commun. 13, 2989 (2022).
Comeau, M. J., Unsworth, M. J. & Cordell, D. New constraints on the magma distribution and composition beneath Volcán Uturuncu and the southern Bolivian Altiplano from magnetotelluric information. Geosphere 12, 1391–1421 (2016).
Ichiki, M. et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity mannequin explored by the use of magnetotelluric technique. Earth Planets House 73, 150 (2021).
Isaia, R. et al. 3D magnetotelluric imaging of a transcrustal magma system beneath the Campi Flegrei caldera, southern Italy. Commun. Earth Environ. 6, 213 (2025).
Key, Okay., Constable, S., Liu, L. & Pommier, A. Electrical picture of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).
Pommier, A. & Le-Trong, E. “SIGMELTS”: an online portal for electrical conductivity calculations in geosciences. Comput. Geosci. 37, 1450–1459 (2011).
Thinon, I. et al. Volcanism and tectonics unveiled within the Comoros archipelago between Africa and Madagascar. C. R. Geosci. 354, 7–34 (2022).
Masquelet, C. et al. Intra-oceanic emplacement of the Comoros archipelago by inherited fracture zones. Tectonophysics 882, 230348 (2024).
Rusquet, A. et al. Phases of magmatism and tectonics alongside the Madagascar–Comoros volcanic chain, and synchronous adjustments within the kinematics of the Lwandle and Somalia plates. J. Geophys. Res. Stable Earth 130, e2024JB029488 (2025).
Lacombe, T. et al. Late Quaternary explosive phonolitic volcanism of Petite-Terre (Mayotte, Western Indian Ocean). Bull. Volcanol. 86, 11 (2024).
Nehlig, P. et al. Discover explicative, carte géologique France (1/30 000), feuille Mayotte (1179). Carte géologique par Lacquement, F., Nehlig, P. & Bernard, J. (BRGM Éditions, Service géologique nationwide, Orléans, 2013).
Pelleter, A.-A. et al. Melilite-bearing lavas in Mayotte (France): an perception into the mantle supply beneath the Comores. Lithos 208, 281–297 (2014).
Lemoine, A. et al. The 2018–2019 seismo-volcanic disaster east of Mayotte, Comoros islands: seismicity and floor deformation markers of an distinctive submarine eruption. Geophys. J. Int. 223, 22–44 (2020).
Michon, L., Famin, V. & Quidelleur, X. Evolution of the East African Rift System from trap-scale to plate-scale rifting. Earth Sci. Rev. 231, 104089 (2022).
Class, C., Goldstein, S. L., Stute, M., Kurz, M. D. & Schlosser, P. Grand Comore Island: a well-constrained “low 3He/4He” mantle plume. Earth Planet. Sci. Lett. 233, 391–409 (2005).
Chauvel, C. et al. Fani Maoré, a brand new “younger HIMU” volcano with excessive geochemistry. Earth Planet. Sci. Lett. 626, 118529 (2024).
Famin, V., Michon, L. & Bourhane, A. The Comoros archipelago: a right-lateral rework boundary between the Somalia and Lwandle plates. Tectonophysics 789, 228539 (2020).
Mercury, N. et al. Onset of a submarine eruption east of Mayotte, Comoros archipelago: the primary ten months seismicity of the seismo-volcanic sequence (2018–2019). C. R. Geosci. 354, 105–136 (2022).
Lavayssière, A. et al. A brand new 1D velocity mannequin and absolute areas picture the Mayotte seismo-volcanic area. J. Volcanol. Geotherm. Res. 421, 107440 (2022).
REVOSIMA Bulletin de Mai 2023 de l’activité sismo-volcanique à Mayotte (IPGP, Université de Paris, OVPF, BRGM, Ifremer, CNRS, 2023); https://www.ipgp.fr/wp-content/uploads/2023/06/Revosima_bull_20230606.pdf.
Cesca, S. et al. Drainage of a deep magma reservoir close to Mayotte inferred from seismicity and deformation. Nat. Geosci. 13, 87–93 (2020).
Berthod, C. et al. Temporal magmatic evolution of the Fani Maoré submarine eruption 50 km east of Mayotte revealed by in situ sampling and petrological monitoring. C. R. Geosci. 354, 195–223 (2022).
Jacques, E. et al. Ring faulting and piston collapse within the mantle sustained the most important submarine eruption ever documented. Earth Planet. Sci. Lett. 647, 119026 (2024).
Dofal, A., Fontaine, F. R., Michon, L., Barruol, G. & Tkalčić, H. Nature of the crust beneath the islands of the Mozambique Channel: constraints from receiver capabilities. J. Afr. Earth. Sci. 184, 104379 (2021).
Foix, O. et al. Offshore Mayotte volcanic plumbing revealed by native passive tomography. J. Volcanol. Geotherm. Res. 420, 107395 (2021).
Sifré, D. et al. Electrical conductivity throughout incipient melting within the oceanic low-velocity zone. Nature 509, 81–85 (2014).
Mittal, T., Jordan, J. S., Retailleau, L., Beauducel, F. & Peltier, A. Mayotte 2018 eruption probably sourced from a magmatic mush. Earth Planet. Sci. Lett. 590, 117566 (2022).
Jorry, S. MAYOBS2 French Oceanographic Cruise, RV Marion Dufresne SISMER Database (French Oceanographic Fleet, 2019).
Darnet, M., Wawrzyniak, P., Tarits, P., Hautot, S. & d’Eu, J.-F. Mapping the geometry of volcanic programs with magnetotelluric soundings: outcomes from a land and marine magnetotelluric survey carried out throughout the 2018–2019 Mayotte seismovolcanic disaster. J. Volcanol. Geotherm. Res. 406, 107046 (2020).
Wawrzyniak, P. et al. Dataset deposit for Nature paper Magnetotelluric proof for a melt-rich magmatic reservoir beneath Mayotte. BRGM https://doi.org/10.18144/605e087b-74a7-4c3b-b733-a5e6167bea0a (2025).
Chave, A. D. & Thomson, D. J. Bounded affect magnetotelluric response perform estimation. Geophys. J. Int. 157, 988–1006 (2004).
Smaï, F. & Wawrzyniak, P. Razorback, an open supply Python library for strong processing of magnetotelluric information. Entrance. Earth Sci. 8, 296 (2020).
Hautot, S. et al. Deep construction of the Baringo Rift Basin (central Kenya) from three‐dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys. Res. Stable Earth 105, 23493–23518 (2000).
Hautot, S. et al. 3-D magnetotelluric inversion and mannequin validation with gravity information for the investigation of flood basalts and related volcanic rifted margins. Geophys. J. Int. 170, 1418–1430 (2007).
Miensopust, M. P., Queralt, P., Jones, A. G. & 3D. MT modellers. Magnetotelluric 3-D inversion—a evaluate of two profitable workshops on ahead and inversion code testing and comparability. Geophys. J. Int. 193, 1216–1238 (2013).
Ars, J.-M. et al. Joint inversion of gravity and floor wave information constrained by magnetotelluric: utility to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics 80, 56–68 (2019).
Booker, J. R. The magnetotelluric section tensor: a important evaluate. Surv. Geophys. 35, 7–40 (2014).
Caricchi, L., Gaillard, F., Mecklenburgh, J. & Le Trong, E. Experimental dedication {of electrical} conductivity throughout deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy within the oceanic low velocity zone. Earth Planet. Sci. Lett. 302, 81–94 (2011).
Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting within the higher mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).
Guo, X. et al. Electrical conductivity of CO2 and H2O‐bearing nephelinitic soften. J. Geophys. Res. Stable Earth 126, e2020JB019569 (2021).
Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. New experimental information and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).
Di Genova, D. et al. Impact of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of present methods to estimate the water content material. Chem. Geol. 475, 76–86 (2017).
Jiménez-Mejías, M., Andújar, J., Scaillet, B. & Casillas, R. Experimental dedication of H2O and CO2 solubilities of mafic alkaline magmas from Canary Islands. C. R. Geosci. 353, 289–314 (2021).
Gaillard, F. & Marziano, G. I. Electrical conductivity of magma in the middle of crystallization managed by their residual liquid composition. J. Geophys. Res. Stable Earth 110, 2004JB003282 (2005).
Blatter, D., Naif, S., Key, Okay. & Ray, A. A plume origin for hydrous soften on the lithosphere–asthenosphere boundary. Nature 604, 491–494 (2022).
Miller, Okay. J., Zhu, W., Montési, L. G. & Gaetani, G. A. Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388, 273–282 (2014).
Gardès, E., Laumonier, M., Massuyeau, M. & Gaillard, F. Unravelling partial soften distribution within the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242 (2020).
Gardés, E., Gaillard, F. & Tarits, P. Towards a unified hydrous olivine electrical conductivity legislation. Geochem. Geophys. Geosystems 15, 4984–5000 (2014).
Yang, X. et al. Impact of water on {the electrical} conductivity of decrease crustal clinopyroxene. J. Geophys. Res. 116, B04208 (2011).
Adam, J., Turner, M., Hauri, E. H. & Turner, S. Crystal/soften partitioning of water and different volatiles throughout the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible parts and implications for the era of intraplate magmatism. Am. Mineral. 101, 876–888 (2016).
Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009).
GeoTools (Viridien Group, 2025).