Magnetotelluric proof for a melt-rich magmatic reservoir beneath Mayotte


  • Cashman, Okay. V., Sparks, R. S. J. & Blundy, J. D. Vertically intensive and unstable magmatic programs: a unified view of igneous processes. Science 355, eaag3055 (2017).

    PubMed 

    Google Scholar
     

  • Bachmann, O. & Bergantz, G. W. Deciphering magma chamber dynamics from kinds of compositional zoning in massive silicic ash circulation sheets. Rev. Mineral. Geochem. 69, 651–674 (2008).

    CAS 

    Google Scholar
     

  • Cooper, Okay. M. & Kent, A. J. Fast remobilization of magmatic crystals saved in chilly storage. Nature 506, 480–483 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Big magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the expansion of the continental crust. Earth Planet. Sci. Lett. 457, 173–180 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Holness, M. B., Inventory, M. J. & Geist, D. Magma chambers versus mush zones: constraining the structure of sub-volcanic plumbing programs from microstructural evaluation of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Weber, G., Caricchi, L., Arce, J. L. & Schmitt, A. Okay. Figuring out the present dimension and state of subvolcanic magma reservoirs. Nat. Commun. 11, 5477 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andújar, J. et al. Experimental proof for the shallow manufacturing of phonolitic magmas at Mayotte. C. R. Geosci. 354, 225–256 (2023).


    Google Scholar
     

  • Berthod, C. et al. The 2018-ongoing Mayotte submarine eruption: magma migration imaged by petrological monitoring. Earth Planet. Sci. Lett. 571, 117085 (2021).

    CAS 

    Google Scholar
     

  • Berthod, C. et al. Mantle xenolith-bearing phonolites and basanites feed the energetic volcanic ridge of Mayotte (Comoros archipelago, SW Indian Ocean). Contrib. Mineral. Petrol. 176, 75 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Feuillet, N. et al. Beginning of a big volcanic edifice offshore Mayotte through lithosphere-scale dyke intrusion. Nat. Geosci. 14, 787–795 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • White, S. M., Crisp, J. A. & Spera, F. J. Lengthy‐time period volumetric eruption charges and magma budgets. Geochem. Geophys. Geosystems 7, 2005GC001002 (2006).


    Google Scholar
     

  • Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Entrance. Earth Sci. 10, 970131 (2022).


    Google Scholar
     

  • Chave, A. D. & Jones, A. G. The Magnetotelluric Technique: Idea and Apply (Cambridge Univ. Press, 2012).

  • Yoshino, T. in Magmas Underneath Stress (eds Kono, Y. & Sanloup, C.) 281–319 (Elsevier, 2018).

  • Johnson, N. E. et al. Magma imaged magnetotellurically beneath an energetic and an inactive magmatic phase in Afar, Ethiopia. Geol. Soc. Lond. Spec. Publ. 420, 105–125 (2016).

    ADS 

    Google Scholar
     

  • Hill, G. J. et al. Trans-crustal structural management of CO2-rich extensional magmatic programs revealed at Mount Erebus Antarctica. Nat. Commun. 13, 2989 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comeau, M. J., Unsworth, M. J. & Cordell, D. New constraints on the magma distribution and composition beneath Volcán Uturuncu and the southern Bolivian Altiplano from magnetotelluric information. Geosphere 12, 1391–1421 (2016).

    ADS 

    Google Scholar
     

  • Ichiki, M. et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity mannequin explored by the use of magnetotelluric technique. Earth Planets House 73, 150 (2021).

    ADS 

    Google Scholar
     

  • Isaia, R. et al. 3D magnetotelluric imaging of a transcrustal magma system beneath the Campi Flegrei caldera, southern Italy. Commun. Earth Environ. 6, 213 (2025).

    ADS 

    Google Scholar
     

  • Key, Okay., Constable, S., Liu, L. & Pommier, A. Electrical picture of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pommier, A. & Le-Trong, E. “SIGMELTS”: an online portal for electrical conductivity calculations in geosciences. Comput. Geosci. 37, 1450–1459 (2011).

    ADS 

    Google Scholar
     

  • Thinon, I. et al. Volcanism and tectonics unveiled within the Comoros archipelago between Africa and Madagascar. C. R. Geosci. 354, 7–34 (2022).


    Google Scholar
     

  • Masquelet, C. et al. Intra-oceanic emplacement of the Comoros archipelago by inherited fracture zones. Tectonophysics 882, 230348 (2024).


    Google Scholar
     

  • Rusquet, A. et al. Phases of magmatism and tectonics alongside the Madagascar–Comoros volcanic chain, and synchronous adjustments within the kinematics of the Lwandle and Somalia plates. J. Geophys. Res. Stable Earth 130, e2024JB029488 (2025).

    ADS 

    Google Scholar
     

  • Lacombe, T. et al. Late Quaternary explosive phonolitic volcanism of Petite-Terre (Mayotte, Western Indian Ocean). Bull. Volcanol. 86, 11 (2024).

    ADS 

    Google Scholar
     

  • Nehlig, P. et al. Discover explicative, carte géologique France (1/30 000), feuille Mayotte (1179). Carte géologique par Lacquement, F., Nehlig, P. & Bernard, J. (BRGM Éditions, Service géologique nationwide, Orléans, 2013).

  • Pelleter, A.-A. et al. Melilite-bearing lavas in Mayotte (France): an perception into the mantle supply beneath the Comores. Lithos 208, 281–297 (2014).

    ADS 

    Google Scholar
     

  • Lemoine, A. et al. The 2018–2019 seismo-volcanic disaster east of Mayotte, Comoros islands: seismicity and floor deformation markers of an distinctive submarine eruption. Geophys. J. Int. 223, 22–44 (2020).

    ADS 

    Google Scholar
     

  • Michon, L., Famin, V. & Quidelleur, X. Evolution of the East African Rift System from trap-scale to plate-scale rifting. Earth Sci. Rev. 231, 104089 (2022).


    Google Scholar
     

  • Class, C., Goldstein, S. L., Stute, M., Kurz, M. D. & Schlosser, P. Grand Comore Island: a well-constrained “low 3He/4He” mantle plume. Earth Planet. Sci. Lett. 233, 391–409 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Chauvel, C. et al. Fani Maoré, a brand new “younger HIMU” volcano with excessive geochemistry. Earth Planet. Sci. Lett. 626, 118529 (2024).

    CAS 

    Google Scholar
     

  • Famin, V., Michon, L. & Bourhane, A. The Comoros archipelago: a right-lateral rework boundary between the Somalia and Lwandle plates. Tectonophysics 789, 228539 (2020).


    Google Scholar
     

  • Mercury, N. et al. Onset of a submarine eruption east of Mayotte, Comoros archipelago: the primary ten months seismicity of the seismo-volcanic sequence (2018–2019). C. R. Geosci. 354, 105–136 (2022).


    Google Scholar
     

  • Lavayssière, A. et al. A brand new 1D velocity mannequin and absolute areas picture the Mayotte seismo-volcanic area. J. Volcanol. Geotherm. Res. 421, 107440 (2022).


    Google Scholar
     

  • REVOSIMA Bulletin de Mai 2023 de l’activité sismo-volcanique à Mayotte (IPGP, Université de Paris, OVPF, BRGM, Ifremer, CNRS, 2023); https://www.ipgp.fr/wp-content/uploads/2023/06/Revosima_bull_20230606.pdf.

  • Cesca, S. et al. Drainage of a deep magma reservoir close to Mayotte inferred from seismicity and deformation. Nat. Geosci. 13, 87–93 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Berthod, C. et al. Temporal magmatic evolution of the Fani Maoré submarine eruption 50 km east of Mayotte revealed by in situ sampling and petrological monitoring. C. R. Geosci. 354, 195–223 (2022).

  • Jacques, E. et al. Ring faulting and piston collapse within the mantle sustained the most important submarine eruption ever documented. Earth Planet. Sci. Lett. 647, 119026 (2024).

    CAS 

    Google Scholar
     

  • Dofal, A., Fontaine, F. R., Michon, L., Barruol, G. & Tkalčić, H. Nature of the crust beneath the islands of the Mozambique Channel: constraints from receiver capabilities. J. Afr. Earth. Sci. 184, 104379 (2021).


    Google Scholar
     

  • Foix, O. et al. Offshore Mayotte volcanic plumbing revealed by native passive tomography. J. Volcanol. Geotherm. Res. 420, 107395 (2021).

    CAS 

    Google Scholar
     

  • Sifré, D. et al. Electrical conductivity throughout incipient melting within the oceanic low-velocity zone. Nature 509, 81–85 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittal, T., Jordan, J. S., Retailleau, L., Beauducel, F. & Peltier, A. Mayotte 2018 eruption probably sourced from a magmatic mush. Earth Planet. Sci. Lett. 590, 117566 (2022).

    CAS 

    Google Scholar
     

  • Jorry, S. MAYOBS2 French Oceanographic Cruise, RV Marion Dufresne SISMER Database (French Oceanographic Fleet, 2019).

  • Darnet, M., Wawrzyniak, P., Tarits, P., Hautot, S. & d’Eu, J.-F. Mapping the geometry of volcanic programs with magnetotelluric soundings: outcomes from a land and marine magnetotelluric survey carried out throughout the 2018–2019 Mayotte seismovolcanic disaster. J. Volcanol. Geotherm. Res. 406, 107046 (2020).

    CAS 

    Google Scholar
     

  • Wawrzyniak, P. et al. Dataset deposit for Nature paper Magnetotelluric proof for a melt-rich magmatic reservoir beneath Mayotte. BRGM https://doi.org/10.18144/605e087b-74a7-4c3b-b733-a5e6167bea0a (2025).

  • Chave, A. D. & Thomson, D. J. Bounded affect magnetotelluric response perform estimation. Geophys. J. Int. 157, 988–1006 (2004).

    ADS 

    Google Scholar
     

  • Smaï, F. & Wawrzyniak, P. Razorback, an open supply Python library for strong processing of magnetotelluric information. Entrance. Earth Sci. 8, 296 (2020).

    ADS 

    Google Scholar
     

  • Hautot, S. et al. Deep construction of the Baringo Rift Basin (central Kenya) from three‐dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys. Res. Stable Earth 105, 23493–23518 (2000).


    Google Scholar
     

  • Hautot, S. et al. 3-D magnetotelluric inversion and mannequin validation with gravity information for the investigation of flood basalts and related volcanic rifted margins. Geophys. J. Int. 170, 1418–1430 (2007).

    ADS 

    Google Scholar
     

  • Miensopust, M. P., Queralt, P., Jones, A. G. & 3D. MT modellers. Magnetotelluric 3-D inversion—a evaluate of two profitable workshops on ahead and inversion code testing and comparability. Geophys. J. Int. 193, 1216–1238 (2013).

    ADS 

    Google Scholar
     

  • Ars, J.-M. et al. Joint inversion of gravity and floor wave information constrained by magnetotelluric: utility to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics 80, 56–68 (2019).

    ADS 

    Google Scholar
     

  • Booker, J. R. The magnetotelluric section tensor: a important evaluate. Surv. Geophys. 35, 7–40 (2014).

    ADS 

    Google Scholar
     

  • Caricchi, L., Gaillard, F., Mecklenburgh, J. & Le Trong, E. Experimental dedication {of electrical} conductivity throughout deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy within the oceanic low velocity zone. Earth Planet. Sci. Lett. 302, 81–94 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting within the higher mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Electrical conductivity of CO2 and H2O‐bearing nephelinitic soften. J. Geophys. Res. Stable Earth 126, e2020JB019569 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. New experimental information and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Di Genova, D. et al. Impact of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of present methods to estimate the water content material. Chem. Geol. 475, 76–86 (2017).

    ADS 

    Google Scholar
     

  • Jiménez-Mejías, M., Andújar, J., Scaillet, B. & Casillas, R. Experimental dedication of H2O and CO2 solubilities of mafic alkaline magmas from Canary Islands. C. R. Geosci. 353, 289–314 (2021).


    Google Scholar
     

  • Gaillard, F. & Marziano, G. I. Electrical conductivity of magma in the middle of crystallization managed by their residual liquid composition. J. Geophys. Res. Stable Earth 110, 2004JB003282 (2005).


    Google Scholar
     

  • Blatter, D., Naif, S., Key, Okay. & Ray, A. A plume origin for hydrous soften on the lithosphere–asthenosphere boundary. Nature 604, 491–494 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, Okay. J., Zhu, W., Montési, L. G. & Gaetani, G. A. Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388, 273–282 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Gardès, E., Laumonier, M., Massuyeau, M. & Gaillard, F. Unravelling partial soften distribution within the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242 (2020).


    Google Scholar
     

  • Gardés, E., Gaillard, F. & Tarits, P. Towards a unified hydrous olivine electrical conductivity legislation. Geochem. Geophys. Geosystems 15, 4984–5000 (2014).

    ADS 

    Google Scholar
     

  • Yang, X. et al. Impact of water on {the electrical} conductivity of decrease crustal clinopyroxene. J. Geophys. Res. 116, B04208 (2011).

    ADS 

    Google Scholar
     

  • Adam, J., Turner, M., Hauri, E. H. & Turner, S. Crystal/soften partitioning of water and different volatiles throughout the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible parts and implications for the era of intraplate magmatism. Am. Mineral. 101, 876–888 (2016).

    ADS 

    Google Scholar
     

  • Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • GeoTools (Viridien Group, 2025).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *