Mechanism of conductance management and neurosteroid binding in NMDA receptors


  • Hille, B. Ion Channels of Excitable Membranes third edn (Sinauer, 2001).

  • Jahr, C. E. & Stevens, C. F. Glutamate prompts a number of single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Cull-Sweet, S. G. & Usowicz, M. M. A number of-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528 (1987).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Schneggenburger, R. & Ascher, P. Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18, 167–177 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Banke, T. G. & Traynelis, S. F. Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 6, 144–152 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the form of their synaptic response. Nat. Neurosci. 6, 476–483 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bliss, T. V. P. & Collingridge, G. L. A synaptic mannequin of reminiscence: long-term potentiation within the hippocampus. Nature 361, 31–39 (1993).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Malenka, R. C. & Bear, M. F. LTP and LTD: a humiliation of riches. Neuron 44, 5–21 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hansen, Okay. B. et al. Construction, perform, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karakas, E. & Furukawa, H. Crystal construction of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee, C. H. et al. NMDA receptor constructions reveal subunit association and pore structure. Nature 511, 191–197 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, J. X. & Furukawa, H. Dissecting numerous features of NMDA receptors by structural biology. Curr. Opin. Struct. Biol. 54, 34–42 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mony, L. & Paoletti, P. Mechanisms of NMDA receptor regulation. Curr. Opin. Neurobiol. 83, 102815 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, C. & Tajima, N. Structural insights into NMDA receptor pharmacology. Biochem. Soc. Trans. 51, 1713–1731 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, E., Zhang, J., Zhang, J. & Zhu, S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr. Opin. Neurobiol. 83, 102806 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hansen, Okay. B. et al. Construction, perform, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ratner, M. H., Kumaresan, V. & Farb, D. H. Neurosteroid actions in reminiscence and neurologic/neuropsychiatric problems. Entrance. Endocrinol. 10, 169 (2019).

    Article 

    Google Scholar
     

  • Hanson, J. E. et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 49, 51–66 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zorumski, C. F. et al. New instructions in neurosteroid therapeutics in neuropsychiatry. Neurosci. Biobehav. Rev. 172, 106119 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Hrcka Krausova, B. et al. Web site of motion of mind neurosteroid pregnenolone sulfate on the N-methyl-D-aspartate receptor. J. Neurosci. 40, 5922 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perszyk, R. E. et al. Biased modulators of NMDA receptors management channel opening and ion selectivity. Nat. Chem. Biol. 16, 188–196 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chou, T. H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ullman, E. Z. et al. Mechanisms of motion underlying conductance-modifying optimistic allosteric modulators of the NMDA receptor. Mol. Pharmacol. 106, 334–353 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Paul, S. M. et al. The most important mind ldl cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci. 33, 17290–17300 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, F. S., Gibbs, T. T. & Farb, D. H. Pregnenolone sulfate: a optimistic allosteric modulator on the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fritzemeier, R. G. et al. Thienopyrimidinone derivatives as a GluN2B/C/D biased, optimistic allosteric modulator of the N-methyl-d-aspartate receptor. J. Med. Chem. 68, 9303–9322 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Premkumar, L. S., Qin, F. & Auerbach, A. Subconductance States of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence. J. Gen. Physiol. 109, 181–189 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stern, P., Béhé, P., Schoepfer, R. & Colquhoun, D. Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparability with native receptors. Proc. R. Soc. Lond. B 250, 271–277 (1997).

    ADS 

    Google Scholar
     

  • Banke, T. G., Dravid, S. M. & Traynelis, S. F. Protons entice NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25, 42–51 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang, Z. & Gibb, A. J. Mg2+ block properties of triheteromeric GluN1–GluN2B–GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592, 2059–2078 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kang, H. et al. Structural foundation for channel gating and blockade in tri-heteromeric GluN1-2B-2D NMDA receptor. Neuron https://doi.org/10.1016/j.neuron.2025.01.013 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, T. H., Tajima, N., Romero-Hernandez, A. & Furukawa, H. Structural foundation of practical transitions in mammalian NMDA receptors. Cell 182, 357–371 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tajima, N. et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sensible, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the evaluation of the pore dimensions of ion channel structural fashions. J. Mol. Graphics 14, 354–360 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Amin, J. B. et al. Two gates mediate NMDA receptor exercise and are beneath subunit-specific regulation. Nat. Commun. 14, 1623 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Swanson, G. T., Kamboj, S. Okay. & Cull-Sweet, S. G. Single-channel properties of recombinant AMPA receptors rely on RNA modifying, splice variation, and subunit composition. J. Neurosci. 17, 58 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. A transmembrane accent subunit that modulates kainate-type glutamate receptors. Neuron 61, 385–396 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Watanabe, J., Beck, C., Kuner, T., Premkumar, L. S. & Wollmuth, L. P. DRPEER: a motif within the extracellular vestibule conferring excessive Ca2+ flux charges in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Perszyk, R. E. et al. Hodgkin-Huxley-Katz Prize Lecture: genetic and pharmacological management of glutamate receptor channel by means of a extremely conserved gating motif. J. Physiol. https://doi.org/10.1113/JP278086 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric construction of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance ranges. Nature 605, 172–178 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Coombs, I. D. & Cull-Sweet, S. G. Single-channel mechanisms underlying the perform, variety and plasticity of AMPA receptors. Neuropharmacology 198, 108781 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Benveniste, M. & Mayer, M. L. Kinetic evaluation of antagonist motion at N-methyl-D-aspartic acid receptors. Two binding websites every for glutamate and glycine. Biophys. J. 59, 560–573 (1991).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hale, W. D., Huganir, R. L. & Twomey, E. C. Structure, activation, and conformational plasticity within the GluA4 AMPA receptor. Preprint at bioRxiv https://doi.org/10.1101/2025.06.12.659357 (2025).

  • Furukawa, H., Simorowski, N. & Michalski, Okay. Efficient manufacturing of oligomeric membrane proteins by EarlyBac-insect cell system. Strategies Enzymol. 653, 3–19 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM films of particular person particles by optimization of picture translations. J. Struct. Biol. 192, 188–195 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chou, T. H. et al. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol. 29, 507–518 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: instruments for construction constructing and evaluation. Protein Sci. 32, e4792 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular construction dedication utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lewis, C. A. Ion-concentration dependence of the reversal potential and the one channel conductance of ion channels on the frog neuromuscular junction. J. Physiol. 286, 417–445 (1979).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jatzke, C., Hernandez, M. & Wollmuth, L. P. Extracellular vestibule determinants of Ca2+ inflow in Ca2+-permeable AMPA receptor channels. J. Physiol. 549, 439–452 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Webb, B. & Sali, A. Comparative protein construction modeling utilizing MODELLER. Curr. Protoc.Bioinform. 2016, 5.6.1–5.6.37 (2016).


    Google Scholar
     

  • Lindorff-Larsen, Okay. et al. Improved side-chain torsion potentials for the Amber ff99SB protein pressure area. Proteins 78, 1950–1958 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Joung, I. S. & Cheatham, T. E. III Dedication of alkali and halide monovalent ion parameters to be used in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) technique for Ewald sums in giant methods. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations by means of multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *