Hille, B. Ion Channels of Excitable Membranes third edn (Sinauer, 2001).
Jahr, C. E. & Stevens, C. F. Glutamate prompts a number of single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987).
Cull-Sweet, S. G. & Usowicz, M. M. A number of-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528 (1987).
Schneggenburger, R. & Ascher, P. Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron 18, 167–177 (1997).
Banke, T. G. & Traynelis, S. F. Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 6, 144–152 (2003).
Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the form of their synaptic response. Nat. Neurosci. 6, 476–483 (2003).
Bliss, T. V. P. & Collingridge, G. L. A synaptic mannequin of reminiscence: long-term potentiation within the hippocampus. Nature 361, 31–39 (1993).
Malenka, R. C. & Bear, M. F. LTP and LTD: a humiliation of riches. Neuron 44, 5–21 (2004).
Hansen, Okay. B. et al. Construction, perform, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).
Karakas, E. & Furukawa, H. Crystal construction of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).
Lee, C. H. et al. NMDA receptor constructions reveal subunit association and pore structure. Nature 511, 191–197 (2014).
Wang, J. X. & Furukawa, H. Dissecting numerous features of NMDA receptors by structural biology. Curr. Opin. Struct. Biol. 54, 34–42 (2019).
Mony, L. & Paoletti, P. Mechanisms of NMDA receptor regulation. Curr. Opin. Neurobiol. 83, 102815 (2023).
Zhou, C. & Tajima, N. Structural insights into NMDA receptor pharmacology. Biochem. Soc. Trans. 51, 1713–1731 (2023).
Wu, E., Zhang, J., Zhang, J. & Zhu, S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr. Opin. Neurobiol. 83, 102806 (2023).
Hansen, Okay. B. et al. Construction, perform, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).
Ratner, M. H., Kumaresan, V. & Farb, D. H. Neurosteroid actions in reminiscence and neurologic/neuropsychiatric problems. Entrance. Endocrinol. 10, 169 (2019).
Hanson, J. E. et al. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 49, 51–66 (2024).
Zorumski, C. F. et al. New instructions in neurosteroid therapeutics in neuropsychiatry. Neurosci. Biobehav. Rev. 172, 106119 (2025).
Hrcka Krausova, B. et al. Web site of motion of mind neurosteroid pregnenolone sulfate on the N-methyl-D-aspartate receptor. J. Neurosci. 40, 5922 (2020).
Perszyk, R. E. et al. Biased modulators of NMDA receptors management channel opening and ion selectivity. Nat. Chem. Biol. 16, 188–196 (2020).
Chou, T. H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).
Ullman, E. Z. et al. Mechanisms of motion underlying conductance-modifying optimistic allosteric modulators of the NMDA receptor. Mol. Pharmacol. 106, 334–353 (2024).
Paul, S. M. et al. The most important mind ldl cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci. 33, 17290–17300 (2013).
Wu, F. S., Gibbs, T. T. & Farb, D. H. Pregnenolone sulfate: a optimistic allosteric modulator on the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336 (1991).
Fritzemeier, R. G. et al. Thienopyrimidinone derivatives as a GluN2B/C/D biased, optimistic allosteric modulator of the N-methyl-d-aspartate receptor. J. Med. Chem. 68, 9303–9322 (2025).
Premkumar, L. S., Qin, F. & Auerbach, A. Subconductance States of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence. J. Gen. Physiol. 109, 181–189 (1997).
Stern, P., Béhé, P., Schoepfer, R. & Colquhoun, D. Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparability with native receptors. Proc. R. Soc. Lond. B 250, 271–277 (1997).
Banke, T. G., Dravid, S. M. & Traynelis, S. F. Protons entice NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25, 42–51 (2005).
Huang, Z. & Gibb, A. J. Mg2+ block properties of triheteromeric GluN1–GluN2B–GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592, 2059–2078 (2014).
Kang, H. et al. Structural foundation for channel gating and blockade in tri-heteromeric GluN1-2B-2D NMDA receptor. Neuron https://doi.org/10.1016/j.neuron.2025.01.013 (2025).
Chou, T. H., Tajima, N., Romero-Hernandez, A. & Furukawa, H. Structural foundation of practical transitions in mammalian NMDA receptors. Cell 182, 357–371 (2020).
Tajima, N. et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68 (2016).
Sensible, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the evaluation of the pore dimensions of ion channel structural fashions. J. Mol. Graphics 14, 354–360 (1996).
Amin, J. B. et al. Two gates mediate NMDA receptor exercise and are beneath subunit-specific regulation. Nat. Commun. 14, 1623 (2023).
Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).
Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).
Swanson, G. T., Kamboj, S. Okay. & Cull-Sweet, S. G. Single-channel properties of recombinant AMPA receptors rely on RNA modifying, splice variation, and subunit composition. J. Neurosci. 17, 58 (1997).
Zhang, W. et al. A transmembrane accent subunit that modulates kainate-type glutamate receptors. Neuron 61, 385–396 (2009).
Watanabe, J., Beck, C., Kuner, T., Premkumar, L. S. & Wollmuth, L. P. DRPEER: a motif within the extracellular vestibule conferring excessive Ca2+ flux charges in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).
Perszyk, R. E. et al. Hodgkin-Huxley-Katz Prize Lecture: genetic and pharmacological management of glutamate receptor channel by means of a extremely conserved gating motif. J. Physiol. https://doi.org/10.1113/JP278086 (2020).
Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric construction of a glutamate receptor channel. Science 280, 1596–1599 (1998).
Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance ranges. Nature 605, 172–178 (2022).
Coombs, I. D. & Cull-Sweet, S. G. Single-channel mechanisms underlying the perform, variety and plasticity of AMPA receptors. Neuropharmacology 198, 108781 (2021).
Benveniste, M. & Mayer, M. L. Kinetic evaluation of antagonist motion at N-methyl-D-aspartic acid receptors. Two binding websites every for glutamate and glycine. Biophys. J. 59, 560–573 (1991).
Hale, W. D., Huganir, R. L. & Twomey, E. C. Structure, activation, and conformational plasticity within the GluA4 AMPA receptor. Preprint at bioRxiv https://doi.org/10.1101/2025.06.12.659357 (2025).
Furukawa, H., Simorowski, N. & Michalski, Okay. Efficient manufacturing of oligomeric membrane proteins by EarlyBac-insect cell system. Strategies Enzymol. 653, 3–19 (2021).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction dedication. Nat. Strategies 14, 290–296 (2017).
Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM films of particular person particles by optimization of picture translations. J. Struct. Biol. 192, 188–195 (2015).
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Strategies 17, 1214–1221 (2020).
Chou, T. H. et al. Structural insights into binding of therapeutic channel blockers in NMDA receptors. Nat. Struct. Mol. Biol. 29, 507–518 (2022).
Meng, E. C. et al. UCSF ChimeraX: instruments for construction constructing and evaluation. Protein Sci. 32, e4792 (2023).
Liebschner, D. et al. Macromolecular construction dedication utilizing X-rays, neutrons and electrons: current developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Lewis, C. A. Ion-concentration dependence of the reversal potential and the one channel conductance of ion channels on the frog neuromuscular junction. J. Physiol. 286, 417–445 (1979).
Jatzke, C., Hernandez, M. & Wollmuth, L. P. Extracellular vestibule determinants of Ca2+ inflow in Ca2+-permeable AMPA receptor channels. J. Physiol. 549, 439–452 (2003).
Webb, B. & Sali, A. Comparative protein construction modeling utilizing MODELLER. Curr. Protoc.Bioinform. 2016, 5.6.1–5.6.37 (2016).
Lindorff-Larsen, Okay. et al. Improved side-chain torsion potentials for the Amber ff99SB protein pressure area. Proteins 78, 1950–1958 (2010).
Joung, I. S. & Cheatham, T. E. III Dedication of alkali and halide monovalent ion parameters to be used in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112, 9020–9041 (2008).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) technique for Ewald sums in giant methods. J. Chem. Phys. 98, 10089–10092 (1993).
Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
Nosé, S. A unified formulation of the fixed temperature molecular dynamics strategies. J. Chem. Phys. 81, 511–519 (1984).
Abraham, M. J. et al. GROMACS: excessive efficiency molecular simulations by means of multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).