Churchland, M. M. & Shenoy, Okay. V. Preparatory exercise and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024).
Shenoy, Okay. V., Sahani, M. & Churchland, M. M. Cortical management of arm actions: a dynamical techniques perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).
Codol, O., Michaels, J. A., Kashefi, M., Pruszynski, J. A. & Gribble, P. L. MotorNet, a Python toolbox for controlling differentiable biomechanical effectors with synthetic neural networks. eLife 12, RP88591 (2024).
Tanji, J. & Evarts, E. V. Anticipatory exercise of motor cortex neurons in relation to path of an supposed motion. J. Neurophysiol. 39, 1062–1068 (1976).
Churchland, M. M., Santhanam, G. & Shenoy, Okay. V. Preparatory exercise in premotor and motor cortex displays the velocity of the upcoming attain. J. Neurophysiol. 96, 3130–3146 (2006).
Messier, J. & Kalaska, J. F. Covariation of primate dorsal premotor cell exercise with path and amplitude throughout a memorized-delay reaching job. J. Neurophysiol. 84, 152–165 (2000).
Weinrich, M., Smart, S. P. & Mauritz, Okay. H. A neurophysiological examine of the premotor cortex within the rhesus monkey. Mind 107, 385–414 (1984).
Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, Okay. V. Cortical exercise within the null area: allowing preparation with out motion. Nat. Neurosci. 17, 440–448 (2014).
Li, N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, Okay. A motor cortex circuit for motor planning and motion. Nature 519, 51–56 (2015).
Riehle, A. & Requin, J. Monkey main motor and premotor cortex: single-cell exercise associated to prior details about path and extent of an supposed motion. J. Neurophysiol. 61, 534–549 (1989).
Cisek, P. & Kalaska, J. F. Neural correlates of reaching choices in dorsal premotor cortex: specification of a number of path selections and closing choice of motion. Neuron 45, 801–814 (2005).
Churchland, M. M., Afshar, A. & Shenoy, Okay. V. A central supply of motion variability. Neuron 52, 1085–1096 (2006).
Riehle, A. & Requin, J. The predictive worth for efficiency velocity of preparatory adjustments in neuronal exercise of the monkey motor and premotor cortex. Behav. Mind Res. 53, 35–49 (1993).
Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G. & Shenoy, Okay. V. Neural variability in premotor cortex supplies a signature of motor preparation. J. Neurosci. 26, 3697–3712 (2006).
Afshar, A. et al. Single-trial neural correlates of arm motion preparation. Neuron 71, 555–564 (2011).
Michaels, J. A., Dann, B., Intveld, R. W. & Scherberger, H. Predicting response time from the neural state area of the premotor and parietal greedy community. J. Neurosci. 35, 11415–11432 (2015).
Churchland, M. M. & Shenoy, Okay. V. Delay of motion brought on by disruption of cortical preparatory exercise. J. Neurophysiol. 97, 348–359 (2007).
Li, N., Daie, Okay., Svoboda, Okay. & Druckmann, S. Strong neuronal dynamics in premotor cortex throughout motor planning. Nature 532, 459–464 (2016).
Churchland, M. M. et al. Neural inhabitants dynamics throughout reaching. Nature 487, 51–56 (2012).
Logiaco, L., Abbott, L. F. & Escola, S. Thalamic management of cortical dynamics in a mannequin of versatile motor sequencing. Cell Rep. 35, 109090 (2021).
Michaels, J. A., Schaffelhofer, S., Agudelo-Toro, A. & Scherberger, H. A goal-driven modular neural community predicts parietofrontal neural dynamics throughout greedy. Proc. Natl Acad. Sci. USA 117, 32124–32135 (2020).
Todorov, E. & Jordan, M. I. Optimum suggestions management as a concept of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).
Crevecoeur, F. & Scott, S. H. Priors engaged in long-latency responses to mechanical perturbations recommend a speedy replace in state estimation. PLoS Comput. Biol. 9, e1003177 (2013).
Pruszynski, J. A. & Scott, S. H. Optimum suggestions management and the long-latency stretch response. Exp. Mind Res. 218, 341–359 (2012).
Hatsopoulos, N. G. & Suminski, A. J. Sensing with the motor cortex. Neuron 72, 477–487 (2011).
Pruszynski, J. A. et al. Major motor cortex underlies multi-joint integration for quick suggestions management. Nature 478, 387–390 (2011).
Evarts, E. V. & Tanji, J. Gating of motor cortex reflexes by prior instruction. Mind Res. 71, 479–494 (1974).
Pruszynski, J. A., Omrani, M. & Scott, S. H. Objective-dependent modulation of quick suggestions responses in main motor cortex. J. Neurosci. 34, 4608–4617 (2014).
Omrani, M., Murnaghan, C. D., Pruszynski, J. A. & Scott, S. H. Distributed task-specific processing of somatosensory suggestions for voluntary motor management. eLife 5, e13141 (2016).
Picard, N. & Smith, A. M. Major motor cortical responses to perturbations of prehension within the monkey. J. Neurophysiol. 68, 1882–1894 (1992).
Evarts, E. V. & Fromm, C. Sensory responses in motor cortex neurons throughout exact motor management. Neurosci. Lett. 5, 267–272 (1977).
Wolpaw, J. R. Amplitude of responses to perturbation in primate sensorimotor cortex as a perform of job. J. Neurophysiol. 44, 1139–1147 (1980).
Reschechtko, S. & Pruszynski, J. A. Stretch reflexes. Curr. Biol. 30, R1025–R1030 (2020).
Cheney, P. D. & Fetz, E. E. Corticomotoneuronal cells contribute to long-latency stretch reflexes within the rhesus monkey. J. Physiol. 349, 249–272 (1984).
Pruszynski, J. A., Kurtzer, I., Lillicrap, T. P. & Scott, S. H. Temporal evolution of computerized gain-scaling. J. Neurophysiol. 102, 992–1003 (2009).
Lara, A. H., Elsayed, G. F., Zimnik, A. J., Cunningham, J. P. & Churchland, M. M. Conservation of preparatory neural occasions in monkey motor cortex no matter how motion is initiated. eLife 7, e31826 (2018).
Kaufman, M. T. et al. The most important response part within the motor cortex displays motion timing however not motion sort. eNeuro 3, ENEURO.0085-16.2016 (2016).
Trautmann, E. M. et al. Giant-scale high-density brain-wide neural recording in nonhuman primates. Nat. Neurosci. 28, 1562–1575 (2025).
Darian-Smith, C., Tan, A. & Edwards, S. Evaluating thalamocortical and corticothalamic microstructure and spatial reciprocity within the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. J. Comp. Neurol. 410, 211–234 (1999).
Horne, M. Okay. & Tracey, D. J. The afferents and projections of the ventroposterolateral thalamus within the monkey. Exp. Mind Res. 36, 129–141 (1979).
Morel, A., Liu, J., Wannier, T., Jeanmonod, D. & Rouiller, E. M. Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a a number of tracing examine within the macaque monkey: Thalamocortical connections of premotor cortex. Eur. J. Neurosci. 21, 1007–1029 (2005).
Rouiller, E. M., Liang, F., Babalian, A., Moret, V. & Wiesendanger, M. Cerebellothalamocortical and pallidothalamocortical projections to the first and supplementary motor cortical areas: a a number of tracing examine in macaque monkeys. J. Comp. Neurol. 345, 185–213 (1994).
Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, Okay. V. Computation via neural inhabitants dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).
Mauritz, Okay. H. & Smart, S. P. Premotor cortex of the rhesus monkey: neuronal exercise in anticipation of predictable environmental occasions. Exp. Mind Res. 61, 229–244 (1986).
Glaser, J. I., Perich, M. G., Ramkumar, P., Miller, L. E. & Kording, Okay. P. Inhabitants coding of conditional likelihood distributions in dorsal premotor cortex. Nat. Commun. 9, 1788 (2018).
Rickert, J., Riehle, A., Aertsen, A., Rotter, S. & Nawrot, M. P. Dynamic encoding of motion path in motor cortical neurons. J. Neurosci. 29, 13870–13882 (2009).
Bastian, A., Schöner, G. & Riehle, A. Preshaping and steady evolution of motor cortical representations throughout motion preparation. Eur. J. Neurosci. 18, 2047–2058 (2003).
Smoulder, A. L. et al. A neural foundation of choking underneath stress. Neuron 112, 3424–3433.e8 (2024).
Selen, L. P. J., Shadlen, M. N. & Wolpert, D. M. Deliberation within the motor system: reflex positive aspects monitor evolving proof resulting in a choice. J. Neurosci. 32, 2276–2286 (2012).
Johansson, R. S. & Flanagan, J. R. Coding and use of tactile alerts from the fingertips in object manipulation duties. Nat. Rev. Neurosci. 10, 345–359 (2009).
Turecek, J. & Ginty, D. D. Coding of self and atmosphere by Pacinian neurons in freely shifting animals. Neuron 112, 3267–3277.e6 (2024).
Dimitriou, M. & Edin, B. B. Human muscle spindles act as ahead sensory fashions. Curr. Biol. 20, 1763–1767 (2010).
Jiang, L. P. & Rao, R. P. N. Predictive coding theories of cortical perform. in Oxford Analysis Encyclopedia of Neuroscience https://doi.org/10.1093/acrefore/9780190264086.013.328 (2022).
Richter, D., Kietzmann, T. C. & de Lange, F. P. Excessive-level visible prediction errors in early visible cortex. PLoS Biol. 22, e3002829 (2024).
Rouhani, N. & Niv, Y. Signed and unsigned reward prediction errors dynamically improve studying and reminiscence. eLife 10, e61077 (2021).
Li, J. S., Sarma, A. A., Sejnowski, T. J. & Doyle, J. C. Inner suggestions within the cortical perception-action loop allows quick and correct habits. Proc. Natl Acad. Sci. USA 120, e2300445120 (2023).
Wolpert, D. M., Miall, R. C. & Kawato, M. Inner fashions within the cerebellum. Traits Cogn. Sci. 2, 338–347 (1998).
Miall, R. C., Christensen, L. O. D., Cain, O. & Stanley, J. Disruption of state estimation within the human lateral cerebellum. PLoS Biol. 5, e316 (2007).
Diedrichsen, J., Criscimagna-Hemminger, S. E. & Shadmehr, R. Dissociating timing and coordination as features of the cerebellum. J. Neurosci. 27, 6291–6301 (2007).
Hore, J. & Vilis, T. Lack of set in muscle responses to limb perturbations throughout cerebellar dysfunction. J. Neurophysiol. 51, 1137–1148 (1984).
Scott, S. H. Equipment for measuring and perturbing shoulder and elbow joint positions and torques throughout reaching. J. Neurosci. Strategies 89, 119–127 (1999).
Matthews, P. B. Observations on the automated compensation of reflex achieve on various the pre-existing degree of motor discharge in man. J. Physiol. 374, 73–90 (1986).
Pruszynski, J. A., Kurtzer, I. & Scott, S. H. Fast motor responses are appropriately tuned to the metrics of a visuospatial job. J. Neurophysiol. 100, 224–238 (2008).
Jung, B. et al. A complete macaque fMRI pipeline and hierarchical atlas. Neuroimage 235, 117997 (2021).
Seidlitz, J. et al. A inhabitants MRI mind template and evaluation instruments for the macaque. Neuroimage 170, 121–131 (2018).
Reveley, C. et al. Three-dimensional digital template atlas of the macaque mind. Cereb. Cortex 27, 4463–4477 (2017).
Hartig, R. et al. The Subcortical Atlas of the Rhesus Macaque (SARM) for neuroimaging. Neuroimage 235, 117996 (2021).
Hirai, T. & Jones, E. G. A brand new parcellation of the human thalamus on the idea of histochemical staining. Mind Res. Rev. 14, 1–34 (1989).
Boussard, J., Varol, E., Lee, H. D., Dethe, N. & Paninski, L. Three-dimensional spike localization and improved movement correction for Neuropixels recordings. Preprint at bioRxiv https://doi.org/10.1101/2021.11.05.467503 (2021).
Varol, E. et al. in ICASSP 2021–2021 IEEE Worldwide Convention on Acoustics, Speech and Sign Processing 1085–1089 (IEEE, 2021).
Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).
Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Strategies 21, 914–921 (2024).
Trautmann, E. M. et al. Correct estimation of neural inhabitants dynamics with out spike sorting. Neuron 103, 292–308.e4 (2019).
Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. Neural, mechanical, and geometric elements subserving arm posture in people. J. Neurosci. 5, 2732–2743 (1985).
Thelen, D. G. Adjustment of muscle mechanics mannequin parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125, 70–77 (2003).
Kistemaker, D. A., Wong, J. D. & Gribble, P. L. The central nervous system doesn’t decrease vitality price in arm actions. J. Neurophysiol. 104, 2985–2994 (2010).
Glorot, X. & Bengio, Y. Understanding the issue of coaching deep feedforward neural networks. In Proc. thirteenth Worldwide Convention on Synthetic Intelligence and Statistics 249–256 (JMLR, 2010).
Hu, W., Xiao, L. & Pennington, J. Provable advantage of orthogonal initialization in optimizing deep linear networks. Preprint at https://doi.org/10.48550/arXiv.2001.05992 (2020).
Kingma, D. P. & Ba, J. Adam: A technique for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).
Scott, M. & Su-In, L. A unified strategy to decoding mannequin predictions. Adv. Neural Inf. Course of. Syst. 30, 4765–4774 (2017).
Shapley, L. S. in Contribution to the Principle of Video games (eds Kuhn, H. & Tucker, A.) 307–317 (Princeton Univ. Press, 1953).
Diedrichsen, J. & Kriegeskorte, N. Representational fashions: a standard framework for understanding encoding, pattern-component, and representational-similarity evaluation. PLoS Comput. Biol. 13, e1005508 (2017).
Michaels, J. A. & Pruszynski, J. A. Information from: Sensory expectations form neural inhabitants dynamics in motor circuits [Dataset]. Dryad https://doi.org/10.5061/dryad.0vt4b8hbr (2025).